Name:

_____ Date:______ Period:_____

Secondary 1 Term 1 Review.

NI	\sim	5	e:
IN	()	111	e
	9		\sim .

Date:

Period:_

USE FIGURE FOR 7-12	7. Name the vertex
	for $\angle 4, \angle 2, \angle 1, and \angle 5$?
	24:T
†	2:V
•0	\angle : W
S 4T	
5 3	∠ ら:T
×1	
W 2V	
•	
8. Find the $\angle 1$ if the sum of $\angle 3$ and $\angle 2$ is 135.	9. List the angles that create a straight line.
$2W = 135$ $m < 1 = 45^{\circ}$	∠UTS,∠STW,∠WTV
<u>ר וי וי ו</u> י אר ס צ ו	
<u>(35</u>	
46	
10. If <i>m</i> ∠3 is 65 and <i>m</i> ∠5 is 25, what is <i>m</i> ∠4?	11. Find $m \angle WVT = 2x + 12$ what is the value of x
(B)	
+25 <u>qD</u>	+65 $2X+12=10-12$ -12
9 0 90°	$\frac{110}{2x+98}$
$m - 4 = 90^{\circ}$	X=49
	$\overline{\chi = 49}$

Name:_____ Date:_____ Period:_____

26. The earnings from mowing lawns are given below. If I ask clients for 5.00 more for each lawn, what does that do to the mean, median, mode, range and standard deviation?	 27. Construct a box and whisker for the data, and use it to describe the shape of the distribution. 34, 45, 78, 78, 83, 54, 22, 30, 25 34, 45, 78, 78, 83, 54, 22, 30, 25 34, 45, 78, 78, 83, 54, 22, 30, 25
21.80 , 29.80 , 44.99 , 44.99 , 37.95 \$22.80, \$24.80, \$39.99, \$36.00, \$27.95	39.5
Mean: 35.308 Mode: none SD: 7.3 Median: 32.95 Range: 17.19 6.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
FORMULAS AS REFERENCE:	
Pythagorean Theorem: $a^2 + b^2 = C^2$	
Distance Formula:	
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
Side Angle Theorems: AAS, SAS, ASA, SSS, HL	
Translations:	
$(x, y) \rightarrow (x + a, y + b)$	
Reflections:	
$y:(x,y)\to(-x,y)$	
$x:(x,y)\to(x,-y)$	
Rotations:	
$90^{\circ}C:(x,y) \to (y,-x)$	
$90^{\circ}CC: (x, y) \rightarrow (-y, x)$ $180^{\circ}C: (x, y) \rightarrow (-x, -y)$	
Outlier Test: $T = 1.5(IQR)$	
$LB: Q_1 - T, UB: Q_3 + T$	
Area of a Triangle: $A = \frac{bh}{2}$	