\qquad
\qquad

Intermediate II Term 1 Final Review

1.1 Rational Numbers

Writing Fractions or Mixed Numbers as Decimals.
-The fraction line means divide
-You can make mixed numbers improper and then divide or put the whole number in front and divide the fraction part

Write each Fraction as a decimal

> 2. $-6 \frac{2}{35} \quad 2 \div 35$
> -6.05714286
3. $\frac{5}{8}$

$$
\begin{aligned}
& 5 \div 8 \\
& 0.625
\end{aligned}
$$

4. $4 \frac{13}{25} \quad 13 \div 25$
4.52

Writing Decimals as Fractions

Terminating Decimals:

1. Place Value
2. Reduce
3. Whole Number in Front

Repeating Decimals

1. Put repeating decimals over 9 s (the number of repeating decimals is the number of 9s)
2. Reduce
3. Put the whole number in front

Write each decimal as a fraction SIMPLIFY COMPLETELY

1.2 Powers and Exponents

-A product of repeated factors can be expressed as a power, that is using an exponent and a base.
\qquad Date: \qquad
\qquad
-Example: $2 \cdot 2 \cdot 2 \cdot 2=2^{4}$ where 2 is the base, or the common factor, and 4 is the exponent

Write each expression using exponents.

1. $(-2) \cdot(-2) \cdot(-2) \cdot 3 \cdot 3 \cdot 3 \cdot 3$
$(-2)^{3} \cdot 3^{4}$
2. $a \cdot b \cdot b \cdot a \cdot b$
$a^{2} b^{3}$

Evaluate

3. Evaluate $\left(-\frac{2}{3}\right)^{4}$

$$
\left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right)=\frac{16}{81}
$$

Evaluate the expression. Assume $\mathbf{a}=2$ and $\mathbf{b}=4$ for questions 4 and 5.
4. $a^{3}+b^{2}$
$2^{3}+4^{2}$
$8+16$
5. $(a-2 b)^{2}$
$(-6)^{2}$
$(2-2(4))^{2}$
36

1.3 Multiply and Divide Monomials

- To multiply powers with the same base, add their exponents
- To divide powers with the same base, subtract their exponents

1.4 Powers of Monomials

-To find the power of a power, multiply the exponents
\qquad Date: \qquad Period: \qquad
-To find the power of a product, find the power of each factor and multiply

1. $\left(4^{2}\right)^{3}$	2. $\left[\left(x^{2}\right)^{3}\right]^{7}$
4^{6}	x^{42}
3. $\left(7 x^{2} y^{5} z^{3}\right)^{4}$	
$7^{4} x^{8} y^{20} z^{12}$	

1.5 Negative Exponents

- Any nonzero number to the zero power is 1.
- Any nonzero number to the negative n power is the multiplicative inverse of its nth power (happy fence)

Write each expression using a positive exponent.

1. x^{-7}		
$\frac{1}{x^{7}}$		
3. $\frac{y^{-2}}{y^{-5}}-2++5$	4. $p^{-3} p^{10}$ $-3+10$	p^{7}

\qquad Date: \qquad
\qquad

1.8 Roots

-A square root of a number is one of its two equal factors -A cube root of a number is one of its three equal factors

Solve each equation. Check your solution.

1. $k^{2}=36$
$k=6,-6$
2. $r^{2}=\frac{25}{49}$

$$
r=\frac{5}{7},-\frac{5}{7}
$$

Find each cube root.
3. $\sqrt[3]{512}$
4. $\sqrt[3]{\frac{27}{64}}$

5. Given the area of the square, find the perimeter.

Area=
81 square
feet

1.9 Estimate Roots

-Find the closest perfect square or perfect cube.
-Estimate to the nearest integer.

3. The volume of the cube is given. Estimate the side length of the cube to the nearest integer. Use the formula $V=s^{3}$.

$$
\begin{aligned}
& \sqrt[3]{61} \\
& \sqrt[3]{64}=4
\end{aligned}
$$

\qquad
\qquad

1.95 Simplify Radicals

-Find the prime factorization of the radicand
-Find pairs of the prime factors
-Pull one of each pair outside of the radical

Simplify.	
1. $-5 \sqrt{125}$ (5) 25 $\begin{aligned} & -5 \sqrt{5.5} 5 \\ & -5.5 \sqrt{5} \\ & -25 \sqrt{5} \end{aligned}$	2.
3. $\sqrt{\frac{40}{25}}$	4. $\sqrt{192}$ $\sqrt{(2 \cdot 2)(2 \cdot 2)(2 \cdot 2 \cdot 3}$ (2) 96 (2) 48 (2) 24 (2) 12 (2) 6 (2)(3)
5. $\begin{aligned} & \sqrt{36 x^{4} y^{3} z^{16}} \\ & 66 \\ & \text { (3) } 2(2) \\ & 6 x^{2} y z^{8} \sqrt{y} \end{aligned}$	6. $\sqrt{92 a^{7} b^{6} c^{5}}$ $\begin{aligned} & \text { (2) } \overbrace{26}^{46} \\ & \sqrt{(2 \cdot 2) 23} \\ & 2 a^{3} b^{3} c^{2} \sqrt{a c} \end{aligned}$

\qquad
\qquad

1.10 Compare Real Numbers

-A rational number is a number that can be written as a fraction, where the denominator is not zero
-The decimal form of a rational number is a terminating or repeating decimal.
-You can compare and order real numbers by writing them in the same as a decimal before comparing or ordering them

Classifying Real Numbers. State whether the following numbers are rational or irrational and explain how you know.

| 8. $\sqrt{26}$ |
| :--- | :--- | :--- |
| Irrational, |
| non-repeating |
| non-terminating | | 9.0.3 |
| :--- |
| Rational, |
| can be written |
| as a fraction |\quad| 10.Ration
 Ran be written
 as a fraction |
| :--- |

Name:

